Die Lehrveranstaltungen dieses Moduls vermitteln fachlichen Grundlagen der Softwareentwicklung und der Informatik. Die Studierenden lernen, kleine Probleme zu analysieren und sie mit Hilfe von Programmen zu lösen. Sie wenden bestehende Lösungskonzepte an, um komplexere Probleme in kleinere aufzuteilen. Darüberhinaus lernen Sie existierende Algorithmen zu bewerten und anzuwenden.
Die Studierenden werden befähigt, die grundlegenden Java-Programmiersprachenkonstrukte, wie Variablen, Kontrollstrukturen, Methoden, Klassen, Objekte und Felder zum Lösen einfacher Probleme anzuwenden.
Die Hörer der Vorlesung erlernen Programmier- und Dokumentationskonventionen, um Java-Programme lesbar zu schreiben sowie mit Modultests anhand von JUnit zu testen.
Sie eignen sich die Grundelemente der Unified Modeling Language an und modellieren mit objekt-orientierter Analyse und Design kleinere Programme.
Die Studierenden erkennen rekursive Problemstrukturen und lösen Sie mit rekursiven Algorithmen.
Nach Vermittlung typische Such- und Sortierverfahren, werden sie befähigt, Algorithmen hinsichtlich ihres Resourcenverbrauchs zu analysieren und zu vergleichen.
Die Teilnehmer der Vorlesung wenden ihre Kenntnisse anhand von Übungsaufgaben an.
Lösen einfacher Aufgaben während der Vorlesung.
Mit wöchentlichen Übungsaufgaben vertiefen die Studierenden am Rechner die praktischen Inhalte der Vorlesung.
Sie benutzen eine integrierte Java-Entwicklungsumgebung, um damit Programme zu erstellen, zu testen und zu ändern. In den darauf folgenden Übungen programmieren die Studierenden einfache Berechnungen mit Java unter Verwendung von Variablen, Ausdrücke und Kontrollstrukturen. Später entwickeln die Studenten einfache objekt-orientierte Programme am Rechner. Am Ende lösen Sie rekursive Probleme und implementieren teilweise aus der Vorlesung bekannte Such- und Sortierverfahren.
Zusätzlich lernen die Studierenden anhand einer umfassenden Programmieraufgabe gesamthaft, ein Programm zu entwerfen, zu implementieren und zu testen. Diese Aufgabe ist von der Komplexität her ein kleines textbasiertes Spiel, wie Tic-Tac-Toe, das zwei Personen gegeneinander am Bildschirm spielen können.
Praktische Übungen
Die Studierenden kennen die modernen Formen der visuellen Kommunikation. Dies umfasst die ansprechende Darstellung von Information, deren Strukturierung mit graphischen Mitteln (Weißraum, Farbe, Ornamente) und mit interaktiven Mitteln (Navigationsstruktur). Dazu verfügen sie über ein solides Grundlagenwissen der Farbenlehre, Formenlehre und deren Einsatz in der gestalterischen Umsetzung. Die psychologischen Wirkungsweisen von Metaphern und deren Einsatz beim Bau von intuitiven Benutzungsschnittstellen ist ihnen bekannt.
Die Studierenden setzen sich mit den theoretischen Grundlagen der Mediengestaltung auseinander. Dazu gehören die Kenntnisse von Kreativitätstechniken, Gestaltungsregeln und Gestaltgesetzen, Ordnungssystemen, Mikro- und Makrotypografie, Farbenlehre, Logo/Piktogramm/Icon sowie Layout und Gestaltungsrastern. Zudem bekommen sie einen Einblick in die analoge und digitale Fotografie und in die Konzeption und Gestaltung digitaler Medieninhalte am Beispiel von Webanwendungen.
Die Studierenden werfen einen Blick in die Designgeschichte vom Beginn der Industrialisierung über stilprägende Designrichtungen des 19. und 20. Jahrhunderts bis hin zu aktuellen Strömungen des Designs. Dieser Überblick befähigt die Studierenden, unterschiedliche Designstile einzuordnen und zu beurteilen und ermöglicht ihnen, das erarbeitete Wissen in ihre Gestaltungsprozesse einfließen zu lassen.
Seminaristischer Untericht mit Fallbeispielen.
Die in der Vorlesung erworbenen theoretischen Kenntnisse werden in Übungsaufgaben praktisch angewendet und die Ergebnisse anschließend im Plenum präsentiert und diskutiert. Die Studierenden erlangen die Fähigkeit, Entwürfe zu analysieren und zu beurteilen. Zudem erlernen sie diverse professionelle Software-Tools, um Designlösungen realisieren zu können.
Die Studierenden erlernen die prinzipiellen Beschränkungen heutiger Computer mit endlich viel Speicherplatz. Auf der Basis mathematisch exakter Beweise erfassen sie hierfür wichtige Gebiete der Theoretischen Informatik. Sie klassifizieren formale Sprachen mit Hilfe der sog. Chomsky-Hierarchie und erkennen dadurch ihre algorithmische Komplexität. Weiterhin erfassen die Studierenden die Berechnungskraft gängiger Rechnermodelle durch endliche Automaten und können mit exakten logischen Argumenten deren Grenzen aufzeigen. Weiterhin analysieren sie die Auswirkungen von zusätzlichen Kellerspeichern. Die vorgestellten Ergebnisse können die Studierenden durch den sicheren Umgang mit verschiedenen Beweistechniken belegen.
Die Lehrveranstaltung führt in die Theorie der formalen Sprachen ein. Das Ziel ist die Vermittlung der Chomsky-Hierarchie als ein Stufenmodell unterschiedlich komplexer Sprachen. Weiterhin werden endliche Automaten als Repräsentanten heutiger Computer vorgestellt und ihre Beschränkungen aufgezeigt. Ein weiteres Lernziel ist die sichere Anwendung verschiedener Beweistechniken.
Die Lehrveranstaltung umfasst unter anderem die folgenden Gebiete der theoretischen Informatik: Aussagenlogik, formale Sprachen, Beweistechniken, das O-Kalkül, endliche Automaten, reguläre Sprachen und Ausdrücke, die Chomsky-Hierarchie, das Pumping-Lemma für reguläre und kontextfreie Sprachen sowie die Minimierung endlicher Automaten nach dem Satz von Myhill-Nerode. Weiterhin werden Kellerautomaten, der CYK-Algorithmus sowie Abgeschlossenheitseigenschaften von kontextfreien Sprachen besprochen.
Die Lehrveranstaltung findet als reine Vorlesung statt. Zahlreiche Übungsaufgaben vertiefen die vermittelten Gebiete und werden in evtl. zusätzlich angebotenen Tutorien diskutiert.
Die Studierenden lernen die mathematischen Grundlagen der linearen Algebra, die innerhalb von Informatikanwendungen benötigt werden, kennen. Diese Grundlagen werden insbesondere in der Computergrafik, Robotik, Bildverarbeitung, Kryptographie, Digitaltechnik und auch in vielen weiteren Gebieten der Informatik benötigt. Weiterhin werden die Teilnehmerinnen und Teilnehmer befähigt, einfache mathematische Fragestellungen selbständig zu bearbeiten.
Die Teilnehmerinnen und Teilnehmer eignen sich Grundkenntnisse der Mathematik, insbesondere der linearen Algebra, an. Sie können die Methoden selbständig auf kleinere, mathematische Aufgabenstellungen anwenden. Der Schwerpunkt der linearen Algebra liegt dabei auf anwendungsorientierten Aspekten, wie sie in der Computergraphik und bei 3D Simulationen eingesetzt werden.
Die behandelten Themen umfassen: Indirekter Beweis, Lösungsmengen, Zweistellige Relationen, Ordnungsrelationen, Äquivalenzrelationen, Modulo-Rechnen, Euklidscher Algorithmus, Funktionen, Operationen, Gruppen, Ringe, Körper, Polynomringe, Endliche Körper, Horner-Schema, Interpolationspolynome, Vollständige Induktion, Kombinatorik, Vektorräume, Basis, Dimension, Lineare Gleichungssysteme, Rang, Gauß-Jordan-Algorithmus, Determinanten, Matrizen, Lineare Abbildungen, Invertieren von Matrizen, Rotationsmatrizen, Translationen, Skalierungen, Spiegelungen, Skalarprodukt, Norm, Vektorprodukt, Orthogonale Matrizen, Eigenwerte, Eigenvektoren, homogene Koordinaten.
Die Lehrveranstaltung wird als Vorlesung durchgeführt. Begleitend werden Übungsblätter selbständig bearbeitet. Ferner sollte der Stoff der Vorlesung selbständig nachgearbeitet werden. Es werden Tutorien zur weiteren Unterstützung der Teilnehmer angeboten. In den Tutorien wird insbesondere eine Unterstützung beim Bearbeiten der Übungsaufgaben angeboten.
Das Labor vertieft die Kenntnisse der zugehörigen Vorlesung, vermittelt Grundkenntnisse im Umgang mit Computer-Algebra-Systemen und zeigt das selbständige Lösen mathematischer Aufgabenstellung mit Rechnerunterstützung.
Mit Hilfe des Computer-Algebra-System Maple werden verschiedene, angewandte, mathematische Fragestellungen aus den Bereichen Geometrie, Kurven, Interpolation und Gleichungssysteme gelöst. Einen weiteren Schwerpunkt bilden die durch Matrizen darstellbaren Abbildungen und homogene Koordinaten, wie sie für die Computergrafik grundlegend sind.
Betreute Laborübungen und eigenständiges Arbeiten.
Im Rahmen der Veranstaltungen werden drei Übungsblätter bearbeitet, die in der Lehrveranstaltung verteilt werden. Die Blätter können auch im Intranet abgerufen werden.
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage,
Nach einem Einstufungstest können Studierende ihre Englischkenntnisse auf drei Niveaustufen vertiefen. Das Eingangsniveau setzt die Kompetenzstufe A2 (Basic User) im sechsstufigen Gemeinsamen Europäischen Referenzrahmen voraus. Die ersten zwei Niveaustufen (Englisch für Fortgeschrittene 1 und 2) beschäftigen sich neben einer Wiederholung der Grammatik vorwiegend mit Themen aus der berufsorientierten Allgemeinsprache und der Landeskunde, z. B. Bewerbungsschreiben, Beschreibung von Produkten und Dienstleistungen, Geschäftstelefonate, Ablauf von formellen und informellen Besprechungen, Präsentationen usw. Das damit erreichte Niveau entspricht einer Punktzahl im TOEFL von 173 (computer-based) bzw. der Kompetenzstufe B2 (Independent User) des Europäischen Referenzrahmens. Auf der anschließenden Niveaustufe werden fachsprachliche Kenntnisse (Englisch für Wirtschaft und Technik) erworben: In Business English liegt das Hauptgewicht auf gesprochener Sprache und Arbeit in kleinen Gruppen. Am Anfang des Semesters gründet jede Gruppe ein eigenes Unternehmen, das sich dann im Laufe des Semesters dynamisch weiterentwickelt. Parallel dazu werden systematisch Wortschatz und sprachliche Formulierungen zu solchen Themen wie Firmenstrukturen, Meetings, Verhandlungen, Marketing, Produktion und Verkauf, Finanzen, Erfassen von Berichten sowie Präsentationen kennengelernt, damit die Teilnehmer die sprachlichen Mittel beherrschen, jeden Schritt der Simulation auf Englisch zu bewältigen. Zu den Höhepunkten des Kurses gehören eine simulierte Messe, ein Einstellungsverfahren und die Gruppenpräsentation. In Technical English werden ein technischer Grundwortschatz und typische Ausdrucksformen technischer Kommunikation erworben und praktisch angewandt.
Vorlesungsteilnahme, Kurzvorträge fachlichen Inhalts sowie die Moderation der anschließenden Diskussion, Erstellung von Zusammenfassungen gehörter Fachvorträge und Gruppenarbeiten.
Die Studenten lernen viele der in der Informatik immer wiederkehrenden Algorithmen und Datenstrukturen kennen. Weiterhin können sie abschätzen, in welcher Situation bestimmte komplexe Datentypen eingesetzt werden, wie diese funktionieren und welchen Laufzeitaufwand sie besitzen. Sie werden befähigt die Korrektheit von Algorithmen zu beweisen. In der Übung wenden Sie Ihre erlangten Kenntnisse anhand verschiedener Aufgaben an.
Die Vorlesung gliedert sich in mehrere Teile, die inhaltlich aufeinander aufbauen:
Vor- und Nacharbeit der Vorlesungsinhalte, Klausurvorbereitung
Die Studierenden vertiefen das in der Vorlesung erworbene Wissen, indem sie Übungsaufgaben in Java lösen und kleinere Problemstellungen in UML mit Klassendiagrammen modellieren. Dazu verwenden sie jeweils Standard-Entwicklungsumgebungen.
In dem Labor werden die im Modul "Informatik 2" vermittelten Analyse- Design- und Realisierungskompetenzen praktisch erprobt. Die Studenten werden in die Lage versetzt, aus einer Aufgabenstellung heraus ein kleines Projekt umzusetzen.
Gegenstand der Veranstaltung ist die Einführung in die Programmiersprachen C/C++. Die Veranstaltung besteht aus einem Laboranteil in dem die Studierenden selbständig Übungsaufgaben bearbeiten. Begleitend dazu gibt es einen Vorlesungsanteil der in die elementaren Konzepte von C/C++ einführt. Folgende Themen werden betrachtet.
1. Systemnahe Programmierung in C mit Hilfe von Bitoperationen und Speichermanipulation via Zeigern.
2. Manuelle Speicherverwaltung in C
3. Objekt-orientierte Programmierung in C++ mit Vergleich zu Java.
4. Komplexere Programmieraufgabe unter Ausnutzung der STL.
Laborarbeit
Die Studenten erlernen den Grundaufbau und die Implementierung dynamischer Web-Auftritte. Dazu gehören die Kenntnisse deklarativer Beschreibungssprachen wie XML und HTML 5 zur Definition der Struktur der Oberflächen und Daten sowie die Fähigkeit, mit einer Skriptsprache wie JavaScript und passenden Frameworks Medienanwendungen zu erstellen.
Die Vorlesung bietet eine praktische Einführung in die Konzepte und Paradigmen verteilter Systeme am Beispiel von Web Technologien und der Anwendungsentwicklung im Web. Dies beinhaltet zunächst eine Vorstellung des World Wide Web mit Basisprotokollen wie HTTP und weiteren Standards im Kontext des Internets. Es folgt eine Einführung in den Entwurf und die Konstruktion von Web Anwendungen. Dazu gehört zum einen die Frontend-Entwicklung mit HTML5, CSS3 und clientseitigem JavaScript und zum anderen die Backend-Entwicklung mit serverseitigem JavaScript auf der Node.js Plattform. Zur Interaktion zwischen Frontend und Backend werden moderne REST/HTTP und AJAX Techniken behandelt. Zudem werden auch Mechanismen zur Personalisierung mit Cookies und Sessions sowie zur Authentifizierung von Nutzern vorgestellt. Schließlich erfolgt eine eingehende Diskussion von Sicherheitsaspekten.
In dieser Vorlesung erwerben die Studierenden praktische Fähigkeiten in der Entwicklung und Bereitstellung von Webanwendungen, die auf einem Verständnis verteilter Systeme und Webtechnologien basieren. Sie lernen den kompetenten Einsatz von HTML5, CSS3 und JavaScript für die Frontend-Entwicklung, sowie die serverseitige Entwicklung mit Node.js und verbessern so ihre Fähigkeit, dynamische Full-Stack-Webanwendungen zu erstellen. Darüber hinaus erwerben die Studierenden Kenntnisse in der Implementierung moderner REST/HTTP- und AJAX-Techniken für eine effiziente Frontend-Backend-Kommunikation sowie in der Anwendung von Cookies, Sessions und Authentifizierungsstrategien zur Personalisierung und zur Gewährleistung der Anwendungssicherheit. Diese umfassenden Fähigkeiten bereiten die Studierenden auf eine breite Palette von Aufgaben in der Webentwicklung und im Anwendungsdesign vor und rüsten sie mit den notwendigen Werkzeugen aus, um aktuelle und zukünftige Herausforderungen in diesem Bereich zu bewältigen.
Als Vorbereitung auf einzelne Vorlesungseinheiten wird das Selbststudium grundlegender Inhalte mittels der Begleitliteratur vorausgesetzt (relevante Kapitel werden in der Veranstaltung angekündigt). Weitere eigenständige Arbeitsanteile betreffen die Nachbereitung der Vorlesungsinhalte und die Klausurvorbereitung.
In dem Modul lernen die Studierenden die Grundlagen zur Konzeption und Gestaltung von interaktiven Benutzeroberflächen kennen und wenden das erworbene Wissen selbstständig in der Designpraxis an.
Sie planen Informationsarchitekturen, führen Analysen der Zielgruppen durch und definieren diese. Dabei setzen sie sich mit Fragen der Usability und der Userexperience auseinander. Sie recherchieren aktuelle Trends des User Interface Designs und lassen die Ergebnisse in ihre Gestaltungsprozesse einfliessen. Die erlangten theoretischen Kenntnisse übertragen die Studierenden anschließend in die Praxis und setzen sie in Form von Wireframes, Mockups und interaktiven Prototypen um.
Seminaristische Vorlesung mit Übungsaufgaben
Im Modul Mathematik 2 werden Grundlagen der Statistik und der Analysis vermittelt und vertieft. Eine wichtige Kompetenz hierbei ist sicheres symbolisches Rechnen und Begreifen der Mathematik als formale und eindeutige Sprache. Die Fähigkeit zur Übertragung der mathematischen Formulierungen auf informatische Anwendungen wird erlernt. Studierende erwerben und vertiefen den Umgang mit elementaren Beweistechniken, wie z.B. die der vollständigen Induktion, des direkten oder auch des Widerspruchsbeweises.
Elementare Funktionen, Folgen und Reihen, Grenzwerte und Stetigkeit, Differential- und Integralrechnung in einer und in mehreren Veränderlichen.
Vorlesung. Bearbeitung der Übungsblätter, die in den Tutorien besprochen werden.
Grundbegriffe der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen, Unabhängigkeit von Zufallsvariablen, bedingte Wahrscheinlichkeiten, Ausschnitte aus beschreibender und schließender Statistik.
Vorlesung. Bearbeitung der Übungsblätter, die in den Tutorien besprochen werden.
Die Studierenden erlernen die grundlegenden Begriffe der technischen Informatik. Sie eignen sich die mathematischen Konzepte der Zahlendarstellung und der booleschen Algebra an, die für die Analyse und den Entwurf von Hardware-Schaltungen erforderlich sind. Sie erlernen, wie die gängigen Grundelemente der Digitaltechnik aufgebaut sind und wie sich diese zu komplexen Schaltnetzen und Schaltwerken kombinieren lassen. Ferner werden die Studierenden dazu befähigt, den Aufbau und die Funktionsweise gängiger Standardschaltungen, wie zum Beispiel Addierer oder Schieberegister, zu erklären.
Die Studierenden verstehen die internen Funktionen typischer Prozessoren. Sie kennen die interne Struktur und Programmierung typischer Peripherie. Die Studierenden sind in der Lage, einfache hardwarenahe Programmierungen mit der Sprache "C" durchzuführen. Die Studierenden haben praktische Anwendungserfahrung der erworbenen Kenntnisse durch beispielhafte Arbeiten im Labor.
Die Vorlesung gibt ein Grundverständnis für den Aufbau eines Computers. Es wird gezeigt, wie die Funktionalität eines Rechners in elementare Operationen zerlegt werden kann, die in Form von Logikgattern dann eine physikalische Realisierung erfahren. Es wird erlernt, wie daraus gewünschte Funktionskomponenten entworfen werden, welche mit einem Minimum an Gattern auskommen. Damit wird die Grundlage entsprechender CAE-Systeme gelegt. Im Einzelnen werden folgende Themen behandelt:
Grundlegende Funktionsweise eines Computers; Kenntnis der grundlegenden logischen Schaltungsblöcke; Technologien zur Realisierung der Grundkomponenten; Kenntnis der wichtigsten elektrischen Kenngrößen; Zahlendarstellung; Grundlagen der Schaltalgebra; Methoden der Vereinfachung Boolescher Ausdrücke; Entwerfen kombinatorischer Schaltungen; Entwurf von zweistufigen Schaltnetzen; Entwurf von synchronen Schaltwerken; Flipflops; Zähler und Register.
Im Bereich Prozessoren umfasst die Veranstaltung die Einführung in die Rechnerhardware, die grundlegende Prozessorarchitektur, verschiedene Adressierungsarten, die Befehlsarten der Maschine, Speicherbelegung. Peripheriebausteine und Bitverarbeitung. Ein weiterer Teil der Vorlesung beschäftigt sich mit den speziell für die hardwarenahe Programmierung benötigten Eigenschaften der Sprache C / C++.
Vorlesungsteilnahme, Vor- und Nachbereitung anhand der Vorlesungsfolien und des Vorlesungsprotokolls, Eigenständige Bearbeitung von Übungsaufgaben.
Die in der Vorlesung "Technische Informatik" erlernten Techniken werden im Digitallabor begleitend an der konkreten Hardware eingeübt. Dies dient zur Konkretisierung und Vertiefung des Stoffes sowie zur persönlichen Erfolgskontrolle. Die Studierenden verstehen dadurch die verschiedenen logischen Grundschaltungen, sowie die Zahlendarstellung in verschiedenen Zahlensystemen. Die Teilnehmenden beherrschen den Umgang mit einem Mikrocontroller-Entwicklungssystem und verstehen den Aufbau und die Bedienung typischer Peripherieschaltungen. Das Labor enthält Versuche zur Zahlendarstellung, zu Mikrocontrollern und zur Verwendung von parallelen Peripherieschaltkreisen und Zähler/Zeitgebern.
Praktische Gruppenarbeit im Labor, Durchführung der gestellten Aufgaben mit Nachweis der Funktionsfähigkeit und Beantworten von Fragen. Selbständige Arbeit zur Vorbereitung der Versuche. Erstellen einer schriftlichen Ausarbeitung.
Die Studierenden verstehen die Funktionsweisen und Strukturen moderner Betriebssysteme sowie ihre Einbettung in die jeweiligen Rechnerarchitekturen. Sie erlernen dieses Wissen zur Entwicklung performanter und systemnaher Software einzusetzen und entsprechende Software zu konzipieren und zu implementieren. Die komplexen Programmieraufgaben sind als Teamarbeit ausgelegt und unterstützen damit nicht nur die Verbesserung der fachlichen Kompetenz, sondern dienen gezielt der Entwicklung von Sozial- und Selbstkompetenz.
Die Studierenden nutzen ihre Programmierkenntnisse in Gruppenarbeit an einem Projekt. Anhand verschiedener Aufgaben werden prinzipielle Techniken der systemnahen Programmierung angewandt, sowie allgemeine Programmiertechniken vertieft. Darüber hinaus verstehen die Studierenden die Grundlagen des Compiler-Baus.
Im Rahmen der Lehrveranstaltung Betriebssysteme werden nicht nur die grundlegenden Aufgaben und Arbeitsweisen moderner Betriebssysteme vermittelt, sondern die Studierenden erlernen auch diese Techniken selbständig und strukturiert im Team zur Lösung typischer systemnaher Entwicklungsaufgaben einzusetzen. Die Vorlesung selbst gliedert sich hierzu in vier Teile:
Während im ersten Teil die Verbindung zwischen Rechnerarchitektur und Betriebssystem geschaffen wird und ein prinzipielles Verständnis für die Aufgaben eines Betriebssystems entwickelt wird, stehen in den darauffolgenden Abschnitten die Vermittlung der spezifischen Probleme, das Verstehen der typischen Lösungsstrategien und das Anwenden dieser Strategien im entsprechenden Kontext im Vordergrund. Insbesondere werden folgende Punkte behandelt: Prozessorvirtualisierung, Speichervirtualisierung, Limited Direct Execution, Scheduling-Algorithmen, Free-Space Management, Segmentierung, Page Frames, Prozesse, Threads, Mutex, Semaphor, Condition Variable, Monitore und Patterns zur parallelen Programmierung. Hinzu kommen die zentralen Konzepte von Dateisystemen, deren Aufbau und Realisierung, bis zur Behandlung von Raid-Konzepten und dem Umgang mit modernen SSDs.
Die in Gruppen durchzuführende Aufgaben kommt aus dem Gebiet Compiler-Bau. Im ersten Teil wird den Studenten die Funktionsweise eines Scanners sowie dessen Einordnung innerhalb eines Compilers vermittelt. Die durchzuführende Implementierung in C++ vertieft die Fähigkeiten im Umgang mit dynamischen Datenstrukturen, eigener Speicherverwaltung und Zeigern. Diese Kenntnisse werden im zweiten Teil des Labors im Rahmen der Entwicklung eines Parsers vertieft. Im Mittelpunkt steht hier der Umgang mit rekursiven Datenstrukturen. Die Studenten erlernen, wie sich durch den Einsatz von Entwurfsmustern Strukturen einfacher bearbeiten und verwalten lassen.
Seminaristischer Unterricht; betreutes Labor
Nach der erfolgreichen Teilnahme an diesem Modul sind die Studierenden in der Lage,
Die Vorlesung behandelt die folgenden Themen:
Seminaristischer Unterricht, Übungen teils mit direkter Erfolgskontrolle.
Einführung in Internet-Dienste und Protokolle, Netz-Rand und -Kern, Protokollschichten und Dienstmodelle; Architektur von Netzanwendungen, Kommunikation zwischen Prozessen, Web und HTTP, SMPT und Mail-Zugriffsprotokolle, DNS, Socket-Programmierung; Dienstmodelle der Transportschicht, verbindungsloser Transport mit UDP, Grundlagen der zuverlässigen Kommunikation und Überlastkontrolle, verbindungsorientierter Transport mit TCP; Dienstmodelle der Vermittlungsschicht, Weiterleitung und Routing, Aufbau eines Routers, Internet Protocol (IP), Routing-Algorithmen und Routing im Internet; Dienstmodelle der Sicherungsschicht, Fehlererkennung und -korrektur, Protokolle für Mehrfachzugriffe, ARP, Ethernet.
Die in "Datenbanken 1" erlernten Kenntnisse werden in Gruppenarbeit vertieft und praktisch geübt. Das Zusammenspiel einer Datenbank mit einer höheren Programmiersprache (Java) wird verstanden. Der Einsatz von SQL (DCL; DML; DDL), Transaktionen und Isolationsebenen und die Vermeidung von Deadlocks wird beherrscht.
Es wird eine Datenbankanwendung für eine Lagerverwaltung entworfen und prototypisch realisiert. Dies umfasst das Aufsetzen eines DB-Schemas, den Entwurf und das Testen von SQL-Abfragen, den Einsatz von Transaktionen und Transaktionsebenen sowie die Programmierung von Abfragen und Transaktionen mit Java unter Verwendung von JDBC auf Basis von Oracle (die Vorbereitung zum Labor soll in PostgreSQL oder MySQL erfolgen).
Schließlich werden mehrere gegebene verbale Sachverhalte analysiert, in ein Entity-Relationship-Modell übertragen, normalisiert, in ein physikalisches Schema transferiert und zuletzt in SQL angelegt. Hier wird auch eine Querbezug zur Veranstaltung Mensch-Maschine-Kommunikation hergestellt, insofern, als dass zu den eigenen MMK-Entwürfen auch SQL-Datenmodelle erstellt werden.
Betreutes Labor mit Abschlusspräsentation am Rechner, selbstständige Arbeit, Vor- Nachbereitung, Verfassen eines Laborberichtes zu den Aufgaben.
Die Studierenden können effektive, effiziente und den Endbenutzer zufriedenstellende Benutzungsoberflächen erstellen. Dazu kennen Sie die Anforderungen der Software-Ergonomie und der Gebrauchstauglichkeit (Usability in Context). Einen Entwurfsprozess, der dies sicherstellt, ist ihnen bekannt, und sie haben mit diesem Prozess im Rahmen der Hausarbeit praktische Erfahrungen gewonnen. Insbesondere sind sie in der Lage, die Gebrauchstauglichhkeit eines Produktes durch Tests und Befragungstechniken zu bewerten und Folgerungen aus den gewonnenen Erkenntnissen zu ziehen und umzusetzen. Die hohe Bedeutung und die Inhalte von Style-Guides und der Typographie sind bekannt und werden beim Entwurf beachtet. Bei der Umsetzung der Entwurfsaufgaben im Team haben die Studierenden diskursive Kompetenzen erworben.
Durch regelmäßige Abendveranstaltungen erhalten sie einen ersten Einblick in die Verbandsarbeit, konkret die Arbeit der Usability Professionals' Association (UPA).
Software Ergonomie, Regeln für benutzergerechtes Design (Style-Guides, Typographie), Methodischer Entwurf von Benutzungsschnittstellen: Analyse, Design, Implementierung, Testen der Brauchbarkeit, Befragungstechniken.
Seminaristischer Unterricht, Übungen.
Die in der Vorlesung Mensch-Maschine-Kommunikation erlernten Kenntnisse werden in Gruppenarbeit vertieft und praktisch geübt. Insbesondere der soziale Prozess des benutzerzentrierten Entwurfes sollen erfahren und dessen Probleme verstanden werden. Die Konfliktlösungskompetenz zur Lösung sich widersprechender Meinungen und Zielvorgaben wird eingeübt.
Die hohen Qualitätsanforderungen seitens der Benutzer werden anerkannt und in der praktischen Arbeit erfolgreich umgesetzt.
Es wird eine - der Praxis entstammende - Aufgabe der MMK analysiert und bis einschließlich zum Papierprototyp auch entworfen. Dieser Prototyp wird, gegebenenfalls mehrfach, einem Test der Brauchbarkeit unterworfen bis die vorgegebenen Qualitätsziele erreicht sind.
Betreute Gruppenarbeit mit Präsentation und Diskussion; Test der Gebrauchstauglichkeit des Prototyps, Aufbereiten eines Testberichts mit Verbesserungsvorschlägen.
Die Studierenden setzen die im Modul Mediengestaltung erworbenen Fähigkeiten in einem eigenen Medienprojekt um. Sie beherrschen die zielgruppenadäquate Planung, die Auswahl von Techniken und Werkzeugen sowie deren kompetenten Einsatz in der Produktion. Die Bewertung soll in einer Werkschau mit Ausstellungscharakter erfolgen.
Die Studierenden verfügen über fundierte Kenntnisse unterschiedlicher Interaktionsformen der Mensch-Maschine-Schnittstellen sowie der Konzeption und Gestaltung von multimodalen Benutzeroberflächen.
Sie beschäftigen sich intensiv mit Teilaspekten gestalterischer Prozesse wie z. B. Transition und Animation beim Einsatz von grafischen Benutzeroberflächen, Mikrointeraktionen und unterschiedlichen Arten des Prototypings. Zudem können sie die Merkmale aktueller Designrichtungen definieren und unterscheiden.
Die Studierenden können anhand von gestalterischen Aufgabenstellungen multimediale Projekte konzipieren und mit Hilfe von Wireframes, Mockups und interaktiven Prototypen umsetzen, die Lösungen begründen und präsentieren.
Die Studierenden werden in die Grundbegriffe der Allgemeinen Betriebswirtschaftslehre eingeführt. Sie lernen wirtschaftliche Abläufe und Zusammenhänge kennen. Sie sind in der Lage, die verschiedenen Bereiche der BWL zu benennen und zu skizzieren.
Mithilfe verschiedener Werkzeuge und Konzepte können die Studierenden die Situation eines Unternehmens beschreiben und einordnen.
Darüber hinaus werden die Studierenden in die Lage versetzt, unterschiedliche Kennzahlen, die Aufschluss über die Leistungsfähigkeit eines Unternehmens geben, selbständig zu berechnen und zu analysieren.
Das Modul dient als Grundlage für die Fächer ERP-Systeme, Projektmanagement, Geschäftsprozessmanagement und Business Intelligence.
Die Studierenden werden in die Grundbegriffe der Allgemeinen Betriebswirtschaftslehre eingeführt. Sie lernen wirtschaftliche Abläufe und Zusammenhänge kennen und werden mit den typischen Prozessen und Anforderungen im Unternehmen bekannt gemacht. Sie sind in der Lage, die verschiedenen Bereiche der BWL zu benennen und zu skizzieren.
Mithilfe verschiedener Werkzeuge und Konzepte können die Studierenden die Situation eines Unternehmens beschreiben und einordnen.
Darüber hinaus werden die Studierenden in die Lage versetzt, unterschiedliche Kennzahlen, die Aufschluss über die Leistungsfähigkeit eines Unternehmens geben, selbständig zu berechnen und zu analysieren.
Im Rahmen der Vorlesung Betriebswirtschaftslehre werden die Bereiche Wirtschaftliches Umfeld (VWL), Unternehmensformen, Organisation, Investition und Finanzierung, Marketing sowie Rechnungswesen vertieft behandelt, damit die Studierenden einen ganzheitlichen Überblick über die Funktionsweise eines Unternehmens und die daraus resultierenden Anforderungen erhalten.
Seminaristischer Unterricht: Vorlesung 80%, Übungen 20%
Die Studierenden erlernen wichtige berufsbezogene Fähigkeiten, die auch für das Praxissemester relevant sind. Sie erkennen, wie mit dem Vorgehensmodell Scrum Projekte gesteuert und Ergebnisse präsentiert werden. Außerdem erlernen die Studierenden Techniken zur professionellen Erstellung von wissenschaftlichen Dokumenten. Dazu nutzen sie gängige Softwareprodukte wie MS Office, erstellen geeignete Berechnungen, werten diese effizient aus und visualisieren die Ergebnisse in ansprechender Form. Nach Abschluss des Moduls sind die Studierenden in der Lage, in Scrum-Teams mitzuarbeiten, Daten gezielt aufzubereiten und moderne Präsentationstechniken anzuwenden.
Der Prozess wissenschaftlichen Schreibens wird in seiner Gesamtheit vorgestellt. Einzelne Phasen werden schrittweise beleuchtet sowie Richtlinien zu einer gelingenden Umsetzung erarbeitet. Einen weiteren Schwerpunkt der Veranstaltung bildet die gründliche Einführung in den Umgang mit dem im wissenschaftlichen Umfeld verbreiteten Textsatzsystem LaTeX. Die Studierenden erstellten dabei Dokumenten u.A. unter Beachtung einer korrekten Zitierweise.
Der zweite Veranstaltungsblock führt in das Vorgehensmodell Scrum anhand praxisnaher Beispiele ein. Alternativ dürfen internationale und geflüchtete Studierende diesen zweiten Block durch das Seminar "Beruflich erfolgreich in der neuen Heimat - Einstieg in Praktikum und Beruf in Deutschland" im Studium Generale ersetzen
Die Vorlesung behandelt den allgemeinen Umgang mit MS-Office-Produkten und gibt speziell eine Einführung in die wichtigsten Funktionalitäten von MS-Excel. Die Studierenden erlernen z.B. den Umgang mit Eingabemethoden, Formeln, Diagrammdarstellungen und Suchfunktionen. Grundlegende Kenntnisse bzgl. der Programmierung unter VBA werden ebenfalls vermittelt. Diese werden abschließend auch zur Erstellung von Makroskripten in MS-Word eingesetzt.
Der Fokus liegt auf dem effizienten Einsatz der MS-Office-Produkte. Teilnehmer der Vorlesung sind anschließend in der Lage, typische Aufgaben zügig zu lösen.
Die Lehrveranstaltung setzt sich aus einer Vorlesung (50%) und betreuten, praktischen Übungen (50%) zusammen.
Die Praxistätigkeit dient der Vertiefung der während des Studiums erworbenen Kenntnisse und Fähigkeiten durch qualifizierte Mitarbeit in einem größeren Projekt. Neben der Verbesserung der fachlichen Kompetenz steht vor allen die Entwicklung der Sozial- und Selbstkompetenz im Fokus. Als Teammitglied muss sich der Studierende im realen Projekt behaupten, sich in neue Aufgabengebiete einarbeiten und mit neuen Werkzeugen zurechtkommen. Er lernt sich weiterzuentwickeln und seine tatsächlichen Fähigkeiten einzuschätzen. Die Praxistätigkeit kann in einer Firma, in einer Forschungseinrichtung oder einer Behörde durchgeführt werden.
Gegenstand des Praxissemesters ist die qualifizierte Mitarbeit in typischen, dem Berufsbild eines Informatikers entsprechenden, Projekten. Hierbei werden aktuelle, in der Industrie zum Einsatz kommende Technologien im täglichen Arbeitsalltag erfahren und erlernt und durch die Erstellung eines begleitenden Berichts sowohl theoretisch als auch beschreibend aufgearbeitet. Seitens der Hochschule wird jedem Studierenden ein Mentor zugeordnet, der ihn betreut und gegenüber der Praxisstelle als erster Ansprechpartner fungiert. Ihm obliegt die Überwachung der Ausbildungsqualität.
Das Material hängt von der Aufgabenstellung ab und wird von dem betreuenden Betrieb zur Verfügung gestellt.
Mitarbeit in einem größeren Projekt
Die Studierenden erlernen das produktive und selbständige Mitarbeiten in großen Software-Projekten. Dies umfasst sowohl das Zerlegen anfallender Aufgaben als auch die Bestimmung und Bewertung geeigneter Architekturen. Dabei werden sie befähigt, die nötigen Schritte im Kontext einer gestellten Aufgabe selbständig zu erfassen, zu strukturieren und mittels des Einsatzes geeigneter Werkzeuge und Methoden formal zu beschreiben.
In diesem Kontext erlangen die Studierenden auch die Fähigkeit, Ziele und Probleme verteilter Software-Systeme zu erkennen und einzuordnen. Sie können die allgemeinen Konzepte für Architekturen, Prozesse, Kommunikation, Benennung, Koordination, Replikation, Fehlertoleranz und Sicherheit erklären und sie zur Konstruktion verteilter Software Dienste und Anwendungen anwenden.
Accompanying the software engineering lecture this course project covers a complete step in a modern software development process. Beginning with requirement engineering and analysis, central use cases are designed and finally implemented in Java. By this students learn more than facts, they get experiences and they understand the meaning of terms like architecture-oriented, iterative, incremental, or component-based.
Slides, videos, textbooks, and other literature:
Attended teamwork
Die Vorlesung vermittelt sowohl grundlegende als auch erweiterte Prinzipien verteilter Systeme und veranschaulichen diese in praktischer Form anhand konkreter Paradigmen und Technologien. Das Spektrum behandelter Prinzipien umfasst grundlegende Aspekte der Zielsetzungen und Klassen verteilter Systeme sowie deren Architekturen, Prozesse, Kommunikation und Namenssysteme. Erweiterte Prinzipien beinhalten Koordination, Konsistenz und Replikation, Fehlertoleranz sowie Sicherheit. Die behandelten Prinzipien werden anhand verschiedener Paradigmen exemplarisch vertieft. Dabei werden beispielhafte Umsetzungen einzelner Prinzipien vorgestellt. Zudem erfolgt eine Einführung in die Entwicklung entsprechender Systeme anhand konkreter Technologien.
Nach Abschluss der Vorlesung werden die Studierenden ein umfassendes Verständnis der Prinzipien verteilter Systeme erlangen, die von ihren grundlegenden Zielen und Architekturen bis zu fortgeschrittenen Konzepten wie Koordination, Konsistenz, Replikation, Fehlertoleranz und Sicherheit reichen. Sie erhalten Einblicke in die praktische Anwendung dieser Prinzipien durch die Untersuchung spezifischer Paradigmen und Technologien und verbessern so ihre Fähigkeit, verteilte Systeme zu analysieren und zu entwerfen. Darüber hinaus wird die Einführung in die Entwicklung dieser Systeme unter Verwendung konkreter Softwaretechnologien die Studierenden mit den praktischen Fähigkeiten ausstatten, die für die Implementierung robuster, effizienter und sicherer verteilter Systeme in verschiedenen Computerumgebungen erforderlich sind.
Eigenständige Arbeitsanteile betreffen Vor- und Nacharbeit der Vorlesungsinhalte, Laborarbeit und Klausurvorbereitung.
In the first part of the lecture central modeling techniques for the design of components are developed. In the second part of the lecture well known architectural patterns and concepts are examined. Students learn to identify their structures, properties, and characteristics, to understand and recognize these structures as patterns. The third part of the lecture focuses on module-level architecture. Using various scenarios and examples, the use of different patterns is demonstrated and evaluated in the respective context.
The lecture will take the form of seminars with exercises.
Studierenden wird fortgeschrittenes Wissen über die Funktionsweise von Rechnernetzen und Datenbanksystemen vermittelt. Sie lernen die systematische Vorgehensweise zur Planung und Realisierung von komplexen Informationssystemen und Kommunikationsstrukturen insbesondere für verteilte Systeme. Neben der Betrachtung des Aufbaus und der Funktionsweise moderner Datenbanksysteme werden grundsätzliche Probleme bei der Kommunikation über paketbasierte Netze identifiziert, allgemeine Lösungsansätze für diese Probleme vorgestellt und deren Einsatz anhand von aktuellen Netzprotokollen, -komponenten und -diensten veranschaulicht.
Im Fokus der Vorlesung stehen Aufbau und Funktionsweise moderner relationaler und nicht-relationaler Datenbanksysteme sowie das Transaktionsmanagement:
Teil I behandelt insbesondere relationale Datenbankmanagementsysteme (RDBMS): Grundlagen, Architektur, Komponenten, interne Datenorganisation, Verarbeitung von SQL-Anfragen, Erzeugung optimierter Ausführungspläne, Besonderheiten der Pufferverwaltung, Einsatz von Indexstrukturen, Performanz.
Teil II ist dem Transaktionsmanagements in Datenbanksystemen gewidmet: Definitionen, wesentliche Komponenten in gängigen DBMS, Zustandsdiagramm, ACID-Kriterien, Isolation und Fehlerphänomene, Synchronisationsverfahren (2PL, S2PL, SS2PL, Snapshot Isolation), Serialisierbarkeit, Umsetzung in SQL, Grundlagen Logging und Recovery.
Teil III betrachtet Mechanismen und Datenstrukturen in verteilten relationalen und nicht-relationalen Datenbanksystemen: Aufbau von Multi-RDBMS, Fragmentierung von Datenbanktabellen, Stufen der Datentransparenz und Auswirkungen auf Anwendungen, Techniken der verteilten Verbundberechnung, verteilte ACID-Transaktionen, Einordung nicht-relationaler (NoSQL-) Datenmanagementsysteme, Techniken der Datenpartitionierung, Replikation, BASE, Map-Reduce, Consistent Hashing.
Powerpoint-Folien, Tafelmitschrift, Übungsblätter, empfohlene Lehrbücher:
Özsu, Valduriez: "Principles of Distributed Database Systems", 3rd Edition
Seminaristischer Unterricht mit insg. drei Übungseinheiten á 90 Min.
In der Vorlesung werden anhand der Funktionalitäten der einzelnen Schichten des Internet-Protokollstapels grundlegende Probleme beim Entwurf paketbasierter Netze erarbeitet, allgemeine Lösungsbausteine für diese Probleme identifiziert und deren Anwendung an konkreten Protokollen und Systemen veranschaulicht. In der Anwendungsschicht werden die Übertragung multimedialer Inhalte (Beispiele Netflix und Skype) sowie die Grundlagen sicherer Netzwerkkommunikation (Beispiele Secure Email und TLS) behandelt. Das Kapitel zur Transportschicht behandelt zuverlässige Paketübertragung (Beispiel TCP) und fortgeschrittene Staukontrolle (Beispiele CUBIC und Google BBR). Für die Vermittlungsschicht werden fortgeschrite Adressierungs- und Konfigurationskonzepte (Beispiel IPv6), die Verallgemeinerung der Paketweiterleitung (Beispiel Software Defined Networking mit OpenFlow) und die Absicherung der Kommunikation (Beispiel IPsec) diskutiert. Abschließend wird die Flexibilisierung der Sicherungsschicht (Beispiele VLANs, MPLS und Datacenter Networks) betrachtet. Die Vorlesung versetzt die Studierenden in die Lage, die Funktionsweise und Leistungsfähigkeit von Abläufen auf verschiedenen Ebenen des Internet-Protokollstapels zu analysieren und Lösungsansätze für neue Problemstellungen zu entwickeln, indem sie die erlernten Lösungsbausteine anwenden und neu kombinieren, um auf die Entwicklung von performanten, sicheren und robusten Netzwerkanwendungen vorbereitet zu sein.
Weiter Literaturhinweise werden in der Vorlesung gegeben
Visuelle Wahrnehmungen und ihre Erzeugung durch die Mittel der modernen Computergrafik werden in grundlegenden theoretischen Details ebenso wie in der praktischen Anwendung verstanden. Die 3D-Programmierung virtueller Welten wird in Theorie und Praxis beherrscht.
Vorlesungsteilnahme, Teilnahme an Online-Tests
Die Studierenden sind in der Lage, die im Studium erworbenen Kenntnisse selbständig auf eine abgeschlossene Aufgabenstellung anzuwenden. Sie analysieren das Problem, erstellen ein Konzept, überlegen sich eine Implementierung und setzen diese anschließend eigenständig um. Neben der rein praktischen Arbeit fertigen sie eine Dokumentation an. Die Fähigkeit zur Verteidigung der eigenen Arbeit wird über ein Kolloquium in die Praxis umgesetzt. Die Projektarbeit dient somit als ideale Vorbereitung für die spätere Abschlussarbeit, bei der sStudierenden ganz ähnlich mit einer neuartigen Aufgabenstellung auseinandersetzen werden.
Eine Projektarbeit ist eine selbstständige Bearbeitung eines Themas aus dem Bereich Soft- oder Hardware. Angestrebt wird die Durchführung einer praktischen Aufgabe; es sind aber auch Arbeiten aus den Bereichen Evaluation oder Literaturrecherche möglich.
Die Studierenden analysieren die Aufgabenstellung und recherchieren, mit welchen Hilfsmitteln sie die Aufgabe am besten umsetzen können. Diese verwenden sie anschließend auch entsprechend. Zur Projektarbeit ist eine umfassende Dokumentation zu erstellen, die alle Schritte der Aufgabe und Fertigstellung erfasst (z.B. die genaue Problemstellung, das Konzept, die Implementierung, Bedienungsanleitung und Weiteres) . Der Umfang und die genaue Ausprägung dieser Dokumentation werden nach den Erfordernissen der Arbeit festgelegt. Die Projektarbeit ist so eine Vorbereitung auf die spätere Abschlussarbeit, die die Studierenden nach ganz ähnlichen Richtlinien anfertigen werden.
Literaturstudium zur Vorbereitung der Arbeit. Durchführung der gestellten Projektarbeit in selbständiger, praktischer Arbeit.
Das Kolloquium bildet den Abschluss der Projektarbeit. Die Studierenden präsentieren hierbei in einem Kurzvortrag ihre Ergebnisse und stellen sich anschließend einer Diskussion. Sie weisen dadurch nach, dass sie in der Lage sind, die Problemstellung, die Durchführung der Arbeit und die gefundene Lösung in kurzer prägnanter Form zu erläutern und zu verteidigen.
Eigenständige Vorbereitung, Vortrag und Diskussion, mündliche idigung der Arbeit, des Lösungsweges und der gefundenen Ergebnisse.
Die Studierenden lernen, auf Basis integrierter ERP-Systeme in Geschäftsprozessen zu denken. Sie erkennen die gegenseitigen Abhängigkeiten einzelner betrieblicher Funktionen und vertiefen damit ihr betriebswirtschaftliches Grundwissen um Prozesswissen (horizontale Integration). Weiter erkennen die Studierenden die Notwendigkeit einer vertikalen Integration als Voraussetzung zum Ausbau von ERP-Systemen zu Führungsinformationssystemen.
Das Erlernte wird durch Laborübungen auf Basis von SAP S/4HANA vertieft.
Vorlesungsteilnahme
Die Vorlesung behandelt die Kernprozesse des IT-Service Management sowie Methoden zur systematischen Planung, Erbringung und Unterstützung von IT-Dienstleistungen. Für jeden Prozess werden Zielsetzung, Aufgaben, Abgrenzung, Wirkungsweise und die Abhängigkeiten zu den jeweils anderen Prozessen erarbeitet. Die Studierenden erlangen damit die Kompetenz, die einschlägigen Fachbegriffe zu kennen und in in praktischen Situationen anzuwenden>Die erforderlichen Rollen und Verantwortlichkeiten werden erlernt. Die Studierenden verstehen, wie IT-Prozesse in Referenzmodellen dargestellt werden. In der Vorlesung erfolgt eine Orientierung an der IT Infrastructure Library (ITIL), dabei handelt es sich um einen allgemein anerkannten Standard für den Aufbau und Betrieb von IT-Organisationen.
Teilnahme am seminaristischen Unterricht.
Im Anschluss an die Veranstaltung besteht die optionale Möglichkeit zur Teilnahme an der herstellerunabhängigen, international anerkannten Zertifizierung "Foundation Certificate in IT Service Management". Die Zertifizierung erfolgt in Kooperation mit der itSMF Deutschland eV,
Das Labor findet verzahnt zur Vorlesung tt und dient der Anwendung und Vertiefung des Vorlesungsstoffes.
Es werden folgende Laborübungen durchgeführt:
Selbstständige Bearbeitung einzeln oder als Gruppe zu maximal zweit der Fallstudien in einem SAP ERP System. Software: SAP ECC 6.04, Datenbasis: Global Bike Inc.
Alternative zum Labor: Einführung in die Programmiersprache ABAP. Siehe I W918.
Laborteilnahme und Erstellung von Labor-Leistungsnachweisen.
Übungen und Fallstudien aus dem Curriculum Global Bike 2.1 (GBI) der SAP University Alliances Community für die ersten beiden Übungen.
Customizing und ABAP beruht auf eigenen Fallstudien.
Vermittelt werden weiterführende Kenntnisse in den Bereichen Embedded Systems. Die Studierenden kennen die elementaren Begriffe im Bereich eingebetteter Systeme und sind in der Lage, verschiedene Typen von Echtzeitsystemen voneinander zu unterscheiden. Die Studierenden haben mit dem CAN-Bus ein typisches Kommunikationsmedium und mit der CDMA- Technik eine wichtige Codierung, die z.B. bei der Satellitenkommunikation verwendet wird, kennengelernt. Die Studierenden sind in der Lage, typische Programmieraufgaben im Bereich eingebetteter Systeme in der Sprache C umzusetzen. Vorlesungsbegleitend erlernen die Studierenden den Umgang mit Software-Werkzeugen, mit denen sich die Programmlfzeit der erstellten Software messen unf optimieren lässt.
Die Vorlesung führt in die Software-Entwicklung eingebetteter Echtzeitsysteme ein. Eingebettete Systeme im Sinne dieser Vorlesung sind alle durch Software kontrollierten Computer, die Teil eines größeren Systems sind und deren primäre Funktion nicht rechenorientiert ist. Bei Echtzeitsystemen kommen zusätzlich Aspekte der Rechtzeitigkeit hinzu, d.h., es geht um Systeme, die nicht nur eine korrekte Antwort liefern müssen, sondern die Systemantwort zusätzlich innerhalb einer vorgegebenen und garantierten Zeitspanne berechnen. Im Einzelnen werden Themen aus den folgenden Bereichen behandelt: Entwurf und Architektur von Kfz-Steuergeräten, Grundlagen der Echtzammierung, Codierungen zur Datenübertragungen, Embedded-C.
Vorlesungsteilnahme + 50 % selbständige Arbeit
Mit Hilfe des Werkzeugs CANoe modellieren die Teilnehmer ein Steuergerät aus dem Bereich der Kraftfahrzeugelektronik. Das Projekt wird um Aufgaben aus dem Bereich der Signaldecodierung ergänzt.
Laborteilnahme
Dieses Modul integriert verschiedene Medien-Technologien. Die Studierenden werden in die Lage versetzt, Benutzungsoberflächen für Rich-Fat-Clients und mobile Medien-Anwendungen erstellen zu können. Weiterhin lernen sie, wie das maschinelle Sehen funktioniert und welche Rolle es im Medien-Umfeld spielt.
Im ersten Teil der Vorlesung werden elementare Grundlagen der Bildverarbeitung von lokalen Punktoperationen bis zu Filtertechniken und geometrischen Operationen behandelt. Im zweiten Teil werden vermehrt Techniken des maschinellen Sehens, wie z.B. 3D-Techniken und die Hinführung zu Situationsbeschreibungen besprochen.
Vorlesung mit integrierten Einheiten der Gruppenarbeit.
Die Studierenden verfassen unter Anleitung eines betreuenden Dozenten zu einem aktuellen Informatik-bezogenen Thema eine schriftliche Ausarbeitung und präsentieren die Ergebnisse im Rahmen eines Vortrages mit anschließender Diskussion. Die Ziele dieses Moduls sind neben der eigenständigen Lösung einer fachlichen Problemstellung auch die Fähigkeit zu Vermarktung der Leistung der Studierenden.
Die Teilnehmenden des Seminars erstellen unter Anleitung eines betreuenden Dozenten zu einem Thema eine schriftliche Ausarbeitung in Hausarbeit. Die Seminarthemen sind in Themengruppen klassifiziert und orientieren sich in der Regel an aktuellen Informatik-Problemen. Neben der fachlichen Problemstellung steht in dieser Lehrveranstaltung auch die Selbstdarstellung des Studierenden im Vordergrund. Die Arbeit wird durch eine Präsentation abgeschlossen.
Besprechungen mit dem betreuenden Dozenten; ev. experimentelle Untersuchungen; Literatur-Aufarbeitung; Berichterstellung; Teilnahme an den Seminarvorträgen der Kommilitonen; Diskussion der Präsentationen der Kommilitonen.
Die Studierenden erstellen auf der Basis der schriftlichen Ausarbeitung des Seminars Präsentationsunterlagen (Folien, Videosequenzen, programmierte Beispiele). Sie präsentieren individuell ihre Ausarbeitungen im Rahmen eines Vortrages mit anschließender Diskussion. Neben der fachlichen Problemstellung steht in dieser Lehrveranstaltung auch die eigene Vermarktung der Studierenden im Vordergrund. Bei der Bewertung der studentischen Leistung wird auf folgende Kriterien geachtet: Einhaltung zeitlicher Vorgabenim Vortrag; didaktisch geschickte Präsentation; Diskussionsfestigkeit.
Recherche zum Thema; Diskussion mit dem betreuenden Dozenten; Ausarbeitung der Präsentation; Diskussion im Anschluss an den Vortrag.
Mit erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage,
Die Teilnehmer lernen die interkulturelle Kompetenz als strategischen Wettbewerbsfaktor zu begreifen und ihr eigenes Handeln kulturadäquat zu gestalten:
Vorlesungsteilnahme und praktische Übungen
Die Studierenden lernen in der Vorlesung, sich in Rede und Diskussion frei von störenden Hemmungen und weitgehend unabhängig von einem Text sicher, treffend und erfolgreich zu äußern. Sie sind danach in der Lage, in einem Beruf zu bestehen und am politischen, sozialen, wirtschaftlichen und kulturellen Leben tätigen Anteil nehmen zu können.
Praktische Arbeit (Referate), Übungen, Vorlesungsteilnahme, selbständige Arbeit
Die Studierenden lernen rechtliche Grundlagen kennen, die sie in die Lage versetzen, Verträge abfassen und beurteilen zu können.
Dieses Wahlfachmodul bietet zusammen mit dem zweiten Wahlfachmodul "Ausgewählte Kapitel Informatik/Medien/Kommunikation 2" den Studierenden die Möglichkeit, entsprechend den eigenen Interessen Schwerpunkte zu setzen und ihr Wissen auf bestimmten Fachgebieten zu vertiefen. Die zum Modul gehörenden Lehrveranstaltungen werden in der Regel jedes Semester angeboten. Jeweils zu Semesterbeginn werden im Internet und am Schwarzen Brett die aktuellen Angebote bekannt gegeben. Die Studierenden wählen im 6. Semester drei im 7. Semester vier Lehrveranstaltungen aus.
Dieses Wahlfachmodul bietet zusammen mit dem zweiten Wahlfachmodul "Ausgewählte Kapitel Informatik/Medien/Kommunikation 1" den Studierenden die Möglichkeit, entsprechend den eigenen Interessen Schwerpunkte zu setzen und ihr Wissen auf bestimmten Fachgebieten zu vertiefen. Die zum Modul gehörenden Lehrveranstaltungen werden in der Regel jedes Semester angeboten. Jeweils zu Semesterbeginn werden im Internet und am Schwarzen Brett die aktuellen Angebote bekannt gegeben. Die Studierenden wählen je vier Lehrveranstaltungen aus.
Die Studierenden lernen die Bedeutung des Methoden-gestützten Vohens in der Informatik und die Grundprinzipien des informatischen Forschens kennen. Dazu suchen sie gezielt nach passender wissenschaftlicher Literatur und verstehen, wie diese zu lesen ist und wie sie für die eigene Arbeit eingesetzt werden kann (recherchieren, bewerten, zitieren). Sie sind anschließend in der Lage, eine eigene wissenschaftliche Ausarbeitung (Themenformulierung, Problemstellung, Zielsetzung, Strukturierung und Gliederung, Qualitätssicherung) sicher zu verfassen.
Studierende bearbeiten eine praxisbezogene Problemstellung selbständig unter Anwendung wissenschaftlicher und praktischer Methoden. Sie erlernen dadurch das Vorgehen Erstellen einer Bachelor-Thesis.
Unterlagen zum Ablauf, der Gliederung einer Ausarbeitung und zum Zitieren:
Selbstständiges Erarbeiten der Methodik, des Themas, der Problemstellung, Gliederung der Ausarbeitung, Literaturverzeichnis; Besprechung bzw. Präsentation mit bzw. beim Betreuer.
Die Veranstaltung findet parallel zur Abschlussarbeit statt.
Die Studierenden sind in der Lage, in einem vorgegebenen Zeitraum eine praxisnahe Problemstellung oder eine Forschungsaufgabe selbständig mit wissenschaftlichen Methoden und Erkenntnissen des Fachs zu bearbeiten. Sie strukturieren dazu die Aufgabenstellung, prüfen die Abhängigkeiten, stellen die erforderlichen Ressourcen zusammen und bearbeiten die Aufgabe anhand eines Zeitplans. Die Ergebnisse der Arbeit können dann einem Fachpublikum präsentiert und für weiterführende Arbeiten verwendet werden.
In der Abschlussarbeit bearbeiten die Studierenden in einem vorgegebenen Zeitraum eine praxisnahe Problemstellung oder eine Forschungsaufgabe selbstständig mit wissenschaftlichen Methoden und Erkenntnissen des Fachs. Sie strukturieren dazu die Aufgabenstellung, stellen die erforderlichen Ressourcen zusammen und bearbeiten das Problem an Hand eines Zeitplans. Danach sind sie in der Lage, die Ergebnisse ihrer Arbeit zu präsentieren.
Die Studierenden stellen die innerhalb einer fachlichen, anwendungsbezogenen Arbeit erzielten Erkenntnisse und Ergebnisse einer fachkundigen Zuhörerschaft überzeugend dar. Sie bewerten dazu den Inhalt einer solchen Arbeit, suchen sich gezielt die wesentlichen Aspekte heraus und präsentieren diese didaktisch sinnvoll. Das Fachpublikum kann so die wichtigsten Mehrwerte der Arbeit mitnehmen und für eigene Arbeiten weiterverwenden.
Die Abschlussprüfung erfolgt über alle Informatik-relevanten Themen des Hauptstudiums. Die Studierenden weisen nach, dass sie fachübergreifende Zusammenhänge verstanden haben und diese anwenden können. Sie beantworten dazu Fragen aus vielfältigen Bereichen der Medieninformatik, die im Zusammenhang mit ihrer Abschlussarbeit stehen. Mit der Abschlussprüfung weisen sie nach, dass sie die Kompetenz zur selbstständigen Bearbeitung von neuartigen Problemstellungen aus der Medieninformatik besitzen.