Modul Wahlpflichtfächer 2, Medieninformatik (Bachelor) (SPO 5)

Englische Sprache
Kompakte Schrift

Farbschema

Modulübersicht

Wahlpflichtfächer 2

MINB6505

Prof. Dr.-Ing. Holger Vogelsang

/

6. Semester

keine

Modul Praxistätigkeit

Dieses Wahlfachmodul bietet zusammen mit den beiden anderen Wahlfachmodulen den Studierenden die Möglichkeit, entsprechend den eigenen Interessen Schwerpunkte zu setzen und ihr Wissen auf bestimmten Fachgebieten zu vertiefen. Die zum Modul gehörenden Lehrveranstaltungen werden in der Regel jedes Semester angeboten. Jeweils zu Semesterbeginn werden im Internet und am Schwarzen Brett die aktuellen Angebote bekannt gegeben.

Einzelprüfungen
Lehrveranstaltung Augmented- und Virtual Reality

I W171

Vorlesung

Prof. Dr. Matthias Wölfel

deutsch

4/4

120 Stunden gesamt, davon 60 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Das Modul "Augmented & Virtual Reality" behandelt verschiedene Aspekte dieser aufstrebenden Technologien. Der theoretische Teil der Vorlesungen vermittelt ein grundlegendes Verständnis des Mediums, einschließlich Dimensionen der Realität, menschlicher Aspekte, Tracking, Interaktion & Interface, Bewegung, Stereoskopie und Content Creation.

Das Modul kombiniert theoretische Vorlesungen mit praktischen Übungen, um den Studierenden ein umfassendes Verständnis und praktische Fähigkeiten im Umgang mit Augmented & Virtual Reality zu vermitteln. Es werden Lehrmethoden wie Vorlesungen, Diskussionen, praktische Übungen, Projektarbeit und Kooperationen mit externen Institutionen verwendet. Zur Umsetzung der praktischen Übungen kommen verschiedene Technologien und Tools wie 360° Film-Erstellung, 3D-Modellierung, Licht & Texturierung, Unity-Entwicklungsumgebung, VR-Umsetzung mit HTC Vive oder Meta Quest und AR-Umsetzung mit Smartphones, jeweils mit Unity, zum Einsatz.

Das Modul zielt darauf ab, den Studierenden ein fundiertes Verständnis von Augmented & Virtual Reality zu vermitteln und sie mit praktischen Fähigkeiten auszustatten, um eigene Inhalte in diesen Technologien zu erstellen. Durch die theoretischen Kenntnisse und praktischen Erfahrungen sollen die Studierenden in die Lage versetzt werden, innovative und immersive AR- und VR-Anwendungen zu konzipieren, zu entwickeln und zu evaluieren. Am Ende des Moduls sollen die Studierenden in der Lage sein, eigenständig komplexe AR- und VR-Inhalte zu erstellen und zu präsentieren, um die Anwendungsmöglichkeiten dieser Technologien in verschiedenen Bereichen zu demonstrieren.

Die Vorlesung ist auf 50 Studierende begrenzt.

  • Matthias Wölfel, Immersive Virtuelle Realität: Grundlagen, Technologien, Anwendungen, Springer Vieweg Berlin, Heidelberg, Link: https://link.springer.com/book/10.1007/978-3-662-66908-2
  • Folien zur Vorlesung
  • Jason Jerald, The VR Book: Human-Centered Design for Virtual Reality, Morgan & Claypool Publishers-ACM, 2015
  • Joseph LaViola,‎ Doug Bowman,‎ Ernst Kruijff,‎ Ivan Poupyrev & Ryan P. McMahan, 3D User Interfaces: Theory and Practice, Pearson Education, 2017
  • Holger Tauer, Stereo-3D, Schiele & Schoen, 2010

Die Vorlesung findet teilweise in immersiver virtueller Realität statt. Es werden dafür VR-Brillen an die Studierenden ausgeteilt.

Lehrveranstaltung Datenschutz nach DSGVO

WIB179

Abschlussarbeit

Prof. Dr. Ingo Stengel

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Lehrveranstaltung Embedded Software Labor

I W612

Labor

Prof. Dr. Dirk Hoffmann

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Laborarbeit 1 Semester (benotet)

Mit Hilfe des Werkzeugs CANoe modellieren die Teilnehmer ein Steuergerät aus dem Bereich der Kraftfahrzeugelektronik. Das Projekt wird um Aufgaben aus dem Bereich der Signaldecodierung ergänzt.

  • Aufgabenbeschreibung

Laborteilnahme, Achtung nur nach Besuch des Wahlpflichtfaches I W611!

Lehrveranstaltung Frameworks für Python

I W800

Vorlesung

Prof. Dr. Jürgen Zimmermann

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Lehrveranstaltung Geschäftsprozessmanagement

I W854

Vorlesung

Prof. Dr. Uwe Haneke

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Im Rahmen der Vorlesung werden zunächst die Begrifflichkeiten des Geschäftsprozessmanagements geklärt, bevor dann unterschiedliche Konzepte zur Geschäftsprozessaufnahme und -modellierung dargestellt und untersucht werden. Hierbei wird auch auf die Unterstützung durch geeignete Vorgehensmodelle und Software-Tools eingegangen. Auch neuere Konzepte, wie etwa das Process Mining, werden hier behandelt. Mithilfe entsprechender Tools werden Geschäftsprozesse aufgenommen und anschließend im Rahmen einer Fallstudie simuliert. Abschließend werden Aspekte der Qualitätssicherung von Prozessen, der Bewertung der Leistungsfähigkeit von Prozessen sowie der Prozesskostenrechnung behandelt. Die Studiernden sollen dabei in die Lage versetzt werden, eigenständig die Prozesse im Unternehmensumfeld bearbeiten zu können (Erfassung, Modellierung, Analyse).

Im Überblick:

  • Der Prozessbegriff und Prozessarten
  • Vorgehensmodelle im Prozessmanagement
  • Prozessanalyse (Aufnahme von Prozessen)
  • Prozessmodellierung (Veränderung von Prozessen)
  • Werkzeuge der Prozessmodellierung
  • Prozesssimulation
  • Process Mining
  • Kennzahlen zur Bewertung von Geschäftsprozessen

  • Skript
  • Übungsaufgaben
  • Fallstudien (im ILIAS-System der Hochschule Karlsruhe)
  • Zugang zu verschiedenen Werkzeugen

Seminaristischer Unterricht: Vorlesung, Fallstudien, Übungen

Lehrveranstaltung Grafisch-geometrische Algorithmen

I W158

Vorlesung

Prof. Dr. Christian Pape

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur/mündl. Prüfung 90/20 Min. (benotet)

Grafisch-geometrische Algorithmen lösen Probleme, die auf geometrische Objekte wie Punkte, Linien, Flächen und Körpern im zwei- oder mehrdimensionalen Raum basieren (Algorithmische Geometrie, computational geometry). Diese Algorithmen und ihre zugrundeliegenden Datenstrukturen werden unter anderen in den Bereichen der Computergrafik, Robotik und Geoinformationssysteme angewendet. 

Studenten lernen typische Algorithmen aus der Algorithmischen Geometrie, deren Enturfsprinzipien und Anwendungsbereiche kennen. 
Sie werden befähigt die Algorithmen hinsichtlich ihrer Korrektheit, des Resourcenverbrauchs und Robustheit zu untersuchen und zu vergleichen.

Unter anderem werden folgenden Probleme exemplarisch behandelt:
Berechnung konvexer Hüllen, Schnitt- und Abstandsprobleme, Triangulierung von Polygonen, Geometrische Datenstrukturen wie kd-Bäume.

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: "Computational Geometry: Algorithms and Applications", 2008, 3. Auflage, Springer-Verlag
Franco P. Preparata, Michael Shamos: "Computational Geometry: An Introduction", 1985, Springer-Verlag
Spezielle weiterführende Literatur wird in der Vorlesung bekannt gegeben. 

Lehrveranstaltung HKA-APP

I W155

Praktische Arbeit

M.Sc. Daniel Weisser
Prof. Dr. Manfred Seifert

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Praktische Arbeit 1 Semester (benotet)

HsKAmpus soll umfassende Funktionen für Studierende aller Fakultäten der HsKA bereitstellen:

  • https://www.h-ka.de/hskampus/
  • https://www.youtube.com/watch?v=OcyRZrwXzVM

Hierzu gehören vorrangig Funktionen aus den sogen. Online-Services auf Basis des LSF-Servers (Veranstaltungen/Stundenplan, Einrichtungen, Personen, Studentisches Leben), des QIS-Servers (Notenansicht) und anderer Server (Mensa, KIT, KVV, …). Weitere Formate und Funktionen sind möglich:

  • Erstellung bzw. Weiterentwicklung für Android, iOS, Windows, Web und unseren Broker/Server sowie die neue Ersti-Hilfe
  • Bereitstellung in Google Play, Apple App Store, Microsoft Windows Store und als Web-App
  • Marketing auf verschiedenen Kanälen (WebSite, FaceBook, Instagram, HsKA Site, Werbemittel, …)
  • Benutzersupport
  • Kommunikation an der Hochschule (Campustag).

http://www.hskampus.de

https://www.facebook.com/hskampus

https://www.instagram.com/hskampus/

Start-up Veranstaltung, Bildung von Gruppen, Projektplan, Projektmeetings, Entwicklung, Begleitung in allen Projektphasen

Lehrveranstaltung IoT Internet der Dinge – Use cases und Algorithmen

I W000x

Vorlesung

Prof. Dr. Christine Preisach

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Mündliche Prüfung 20 Min. (benotet)

Lehrveranstaltung IT-Consulting

I W433

Vorlesung

Prof. Dr. rer. pol. Mathias Philipp

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Zunächst erhalten die Studierenden einen Überblick über den internationalen Consultingmarkt und lernen die methodische Grundlagen dieser Branche sowie die Arbeitsschwerpunkte des IT-Consultings kennen. Es wird auf verschiedene Ansätze der Strategieberatung, Prozessberatung und IT-Systemberatung mit den jeweiligen Beratungswerkzeugen und -methoden eingegangen. 

  • Vorlesungsmaterial vollständig in Powerpoint-Folien
  • Tafelaufschrieb bei interaktiver Erarbeitung von Kernproblemstellungen
  • Vorgaben zu Case Study Material

Teilnahme Vorlesung, Bearbeiten von Case Studie in der Gruppe zur Anwendung und Vertiefung verschiedener Beratungsansätze

Lehrveranstaltung IT-Sicherheit

I W210

Vorlesung

Dipl. Inform. (FH) Michael Fischer
Dipl. Inform. (FH) Georg Magschok

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Technische und topologische Mechanismen zur Netzwerksicherung, Angriffsmuster und Abwehrstrategien, Grundlagen, Ausprägungen und Abwehr von malicious Software, Analyse und Beurteilung von Sicherheit und sicherheitstechnischen Vorgängen. Am Ende der Vorlesungsveranstaltung werden praktische Fallbeispiele geübt, die einen Eindruck von der Anwendung der Vorlesungsinhalte bieten.

  • Powerpoint-Folien

Vorlesung mit gewünschten Zwischenfragen; praktische Übungen im Netzwerklabor unter Anleitung der Dozenten

Lehrveranstaltung IT- und Medienrecht

I W159

Vorlesung

RA Josua Neudeck
RA Jeremias Held

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

In der Vorlesung werden Rechtsfragen im Informationstechnologie- und Medienrecht behandelt, die den Studierenden im beruflichen Alltag begegnen. Die Studierenden lernen z.B. die Grundlagen beim Umgang mit urheberrechtlich geschützten Werken, Daten, Marken, Designs oder Persönlichkeitsrechten sowie bei der rechtssicheren Ausgestaltung von Internetseiten, Webshops und Apps kennen.

  • Grundzüge des Urheberrechts und der relevanten gewerblichen Schutzrechte
  • (IT-)Vertragsrecht 
  • KI und Datenschutz
  • Vertragsschluss im Internet
  • Allgemeine rechtliche Anforderungen an Webseiten
  • Internet- und E-Mail-Marketing
  • Rechtsbeziehungen bei Apps
  • Rechtliche Besonderheiten bei Social Media

  • PowerPoint-Folien zum Referat
  • Herzog, Recht für Designer, 2. Auflage 2022
Lehrveranstaltung Konzeption, Design und Präsentation von interaktiven Projekten

I W915

Vorlesung

Prof. Thomas Hinz

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Hausarbeit 1 Semester (benotet)

Die Studierenden verfügen über umfassende theoretische und praktische Kenntnisse in der Konzeption, Gestaltung und Präsentation von interaktiven Projekten. Sie simulieren anhand von Webseitenprojekten oder Applikationen für mobile Endgeräte den Arbeitsalltag der Kreativabteilungen von Multimedia-Agenturen.

Sie lernen an Beispielen, wie Gestaltungsaufträge in der Praxis umgesetzt werden. Dazu gehören Arbeitsschritte wie Kundenbriefing, Brainstorming, Designkonzept, Moodboard, Entwurfsgestaltung, Prototypenbau und Präsentation der Projekte.

  • Vorlesungsunterlagen
  • Fallbeispiele aus der Praxis

Seminaristische Vorlesung mit Übungsaufgaben.

Lehrveranstaltung Microservices

I W930

Vorlesung

Prof. Dr. Jürgen Zimmermann

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Die Studierenden erlernen auf praktische Art und Weise das Architekturprinzip der Microservices, die sich neben herkömmlichen, schwerfälligen Applikationsservern etabliert haben. Anhand eines durchgängigen Beispiels werden Microservices mit folgender Plattform entwickelt:

  • Kubernetes mit Docker-Images und Istio für Virtualisierung, Orchestrierung, Service-Registry, API-Gateway, usw.
  • Kotlin als Programmiersprache bietet objektorientierte Eigenschaften, um Anwendungen sauber zu strukturieren, zusammen mit funktionalen Eigenschaften, um die Anwendungslogik elegant umzusetzen. Dabei werden auch die Kotlin Coroutines für einen nicht-blockierenden Microservice verwendet.
  • Spring Boot als Framework, um Microservices mit REST (oder RSocket) als Schnittstelle zu implementieren.
  • Spring Data MongoDB, um effizient und elegant auf das NoSQL-Datenbanksystem MongoDB zuzugreifen.
  • Spring Security, um Zugriffsschutz für die Microservices zu realisieren.

Die vielfältige Plattform wird anhand eines lauffähigen Beispiels mit Gradle als Buildsystem erläutert. Als Entwicklungsumgebung wird IntelliJ IDEA Ultimate und Docker Desktop Community verwendet. Für IntelliJ IDEA Ultimate können Studierende der HS Karlsruhe auf Initiative des Dozenten seit 2014 eine kostenlose Lizenz erhalten können, die für 1 Jahr gültig ist.

"Learn Kotlin", https://kotlinlang.org/docs/reference
"Spring Framework Documentation", https://docs.spring.io/spring/docs/current/spring-framework-reference
"Spring Boot Reference Guide", https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle
"Spring Data MongoDB", https://docs.spring.io/spring-data/mongodb/docs/current/reference/html
"Spring Security Reference", https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle

Docker, https://www.docker.com/why-docker
Kubernetes, https://kubernetes.io/docs
Istio, https://istio.io/latest/docs
"The MongoDB Manual", https://docs.mongodb.com/manual

Lehrveranstaltung Mobilkommunikation

I W914

Vorlesung

Prof. Dr. Oliver Waldhorst

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Mündliche Prüfung 20 Min. (benotet)

Wie funktioniert eigentlich ein mobiles Kommunikationssystem, z.B. ein Handy- oder WLAN-Netz? Diese Frage, die sich viele sicherlich schon einmal gestellt haben, kann durch Studium der Standarddokumente mehr oder weniger umfassend beantwortet werden. Allerdings hat die Antwort nur eine sehr geringe "Halbwertzeit": So wie es z.B. im Laufe der letzten 25 Jahren mit GSM, UMTS, LTE und 5G vier Generationen von Mobilfunknetzen gegeben hat, wird es im Laufe des Berufslebens der aktuellen Studierendengeneration noch unzählige weitere Netzgenerationen geben. Daher beantwortet die Vorlesung vielmehr die Fragen: Was sind grundsätzliche Problemstellungen, die mobile Netze auch noch in Jahrzehnten lösen müssen? Was sind allgemeingültige Lösungsansätze? Und wie werden diese Ansätze in aktuellen Mobilkommunikationssystemen angewendet? Dabei werden die drahtlose Signalübertragung, der Zugriff auf ein geteiltes Funkmedium und der Umgang mit Mobilität untersucht. Als Beispielsysteme werden WLAN, Bluetooth, Mobilfunknetze von GSM über UMTS mit HSDPA bis zu LTE und 5G sowie Mobilität auf Vermittlungs- und Transportschicht betrachtet.

  • Jochen Schiller, Mobilkommunikation. Pearson Studium, 2003.
  • Martin Sauter, Grundkurs Mobile Kommunikationssysteme, 7. Auflage, 2018 (als E-Book über die KIT-Bibliothek verfügbar)
  • Vorlesungsfolien und -mitschriften

Weitere Literaturhinweise werden in der Vorlesung gegeben.

Lehrveranstaltung Modellbasierte Softwareentwicklung

I W911

Vorlesung

Prof. Dr. Martin Sulzmann

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

This course covers the following areas.

 

1. Embedded software engineering

2. Programming language design and analysis.

 

   We will use the Go programming language to cover various aspects of programming language design and analysis.

  • Introduction to Go, a C style language with garbage collection.
  • Type inference
  • Method overloading
    • Go interfaces
    • Connection to other overloading approaches
  • Syntax analysis
  • Program analysis
  • Concurrency
    • Multi-threading
    • Message-passing
    • Shared memory and data races

  • Foliensammlung
  • Tafelmitschrift
  • Ausgearbeitete Beispiele und Übungen
  • Online Referenzen

Voraussetzung:

  • Grundkenntnisse in UML (Struktur- und Verhaltensdiagramme,)
  • Programmierkenntnisse C++,
  • Logik (zumindest Aussagenlogik),
  • Lexer, Parser, EBNF (grundlegenden Compilerbaukenntnisse)

Seminaristischer Unterricht, ein Drittel der Vorlesung als betreute Projektarbeit (Labor) um die Anwendung des theoretischen Wissens zu ermöglichen.

Lehrveranstaltung Moderne Serveranwendungen und Webapps mit TypeScript

I W934

Vorlesung

Prof. Dr. Jürgen Zimmermann

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

  • Nest mit
  • REST- und GraphQL-Schnittstelle
  • Mongoose für den Zugriff auf MongoDB
  • Authentifizierung mit Passport
  • Integrationstests mit Jest
  • Angular mit
  • Modulsystem
  • Komponenten
  • Services
  • Guards
  • Http-Client
  • zzgl. Bootstrap und Material Icons
  • React mit
  • Hooks
  • React Router
  • Axios als Http-Client
  • React Forms
  • zzgl. Bootstrap und Material Icons

Lehrveranstaltung Predictive Modelling and Machine Learning

I W928

Vorlesung

Prof. Dr. Martin Sulzmann

englisch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Modulprüfung

This course introduces the principles, theories and concepts of statistics and data modelling.

Students will learn

  • how to construct and interpret graphical presentations of data,
  • conduct appropriate statistical tests, use the appropriate techniques in data modelling,
  • interpret the results generated,
  • apply these statistics and data modelling techniques in practical projects, and
  • develop real world analytics solutions using Spark Machine Learning and Scala.

Lehrveranstaltung Robotics - Theory and Practice

I W233

Vorlesung

Prof. Dr. Björn Hein

deutsch

4/4

120 Stunden gesamt, davon 60 Stunden Kontaktstudium.

Klausur/mündl. Prüfung 90/20 Min. (benotet)

Einsatzbereiche von Industrie- und Servicerobotern, Kinematiktypen, Koordinatentransformationen, kinematische Modellierung von Manipulatoren, Bahnplanung, Sensorik, Steuerungsarchitektur (Hardware und Software), Programmiermethoden, Programmiersprachen

Vorherige Anmeldung oder Absprache mit einem Dozenten erforderlich

  • Skript

Seminaristischer Unterricht

Lehrveranstaltung RZ-Betrieb

I W917

Vorlesung

Dr. Günther Schreiner

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Die Teilnehmer werden in die Lage versetzt, sich in einem Rechenzentrumsbetrieb mit internen und externen Schnittstellen zurechtzufinden und ihren persönlichen Beitrag gemäß ihren Fähigkeiten in einer solchen Organisation einzubringen. 

  • Mitschrift
  • Vertiefung im eLearning-System

Unterricht; Übungen im eLearning-System

Lehrveranstaltung Serious Games

I W910

Vorlesung

Prof. Daniel Schwarz

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 90 Min. (benotet)

Die Vorlesung gibt einen Überblick über die Forschung und Entwicklung von Serious Games, ihren verschiedenen Einsatzgebieten in den Bereichen Lernen, Kommunikation und Engineering. Es werden Konzeption, Design, Produktionsprozesse und Wirkungsweisen von Serious Games anhand veröffentlichter Produktionen detailliert präsentiert. Nach dieser grundlegenden Wissensvermittlung über Serious Games erarbeiten die Studierenden dann ein Konzept für das "ultimative Serious Game": Die echte Welt retten.

 

Lernziele der Theorie:

  • Learning Game Design Methodologie für Serious Games unter Einbeziehung von recherchierten Real-Daten
  • Entwicklungs-Geschichte von Serious Games an der Schnittstelle von Wissenschafts-Simulation und Entertainment Games.
  • Grundlagen in System Dynamics, systemischem Denken und Modellbildung

Lernziele der praktischen Aufgaben:

  • Recherche für das Thema des zu konzipierenden Serious Games.
  • Anwenden der Learning Game Design Methodologie anhand einer gemeinsamen Serious Game Konzeption.

  • Salen, Katie, Zimmerman Eric, Rules of Play - Game Design Fundamentals, The MIT Press 2003
  • Salen, Katie, Zimmermann Eric, The Game Design Reader - A Rules of Play Anthology, The MIT Press 2006
  • Schell, Jesse, The Art of Game Design - A book of lenses, second edition, CRC Press, Tayler & Francis Group 2015
  • McGonigal, Jane, Besser als die Wirklichkeit!: Warum wir von Computerspielen profitieren und wie sie die Welt verändern, Heyne Verlag 2011
  • Prensky, Marc,  Don’t bother me mom, I’m learning! : how computer and video games are preparing your kid for a 21st century success and how you can help!, Paragon House, 2006
  • Gee, James Paul, Good video games and good learning: collected essays on video games, learning and literacy, Peter Lang Publishing, Inc., New York, 2007

Der Leistungsnachweis dieser Vorlesung wird die Abgabe eines Spielkonzepts für das "ultimative Serious Game" sein, das - in Einzel- oder Gruppenarbeit - mit der vermittelten Learning Game Design - Methodologie vermittelt wurde. Das Spielübersichts-Diagramm dieses Spielkonzepts wird als dynamisches System-Design mit einer visuellen Programmiersprache umgesetzt.

Lehrveranstaltung Sounddesign

I W801

Vorlesung

B.Sc. Noah Ibers

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Klausur 60 Min. (benotet)

Die Vorlesung führt in verschiedene Konzepte und Bereiche des Sounddesign ein. Neben technischen Grundlagen zu:

  • Raumklang und Wellen
  • Aufnahmetechnik, Speicherung und Verarbeitung
  • Klangsynthese

werden auch kreative Einsatzgebiete von Sounddesign wie:

  • Audiobearbeitung
  • Musik- und Audioproduktion
  • Musiktheorie
  • Einsatz und Wirkung von Sound in Anwendungen oder Filmen

angeschnitten. Es wird gezeigt, wie professionelle Klanglandschaften und Stimmungen gestaltet werden können, um gewünschte Wirkungen zu erzielen.

 

Die Vorlesung wird von Übungsaufgaben begleitet, in denen das Wissen praktisch angewandt wird. Die Inhalte der Aufgaben reichen von der Bearbeitung von Audiospuren, über Klangsynthese und Vertonung von Film-Szenen bis hin zur Entwicklung von Sound-Brands.

  • Vorlesungsskript
  • Fallbeispiele aus der Praxis

Seminaristische Vorlesung mit Übungsaufgaben

Lehrveranstaltung Unternehmenssoftware aus der Cloud

I W779

Vorlesung

Prof. Dr. Zoltán Nochta

deutsch

2/2

60 Stunden gesamt, davon 30 Stunden Kontaktstudium.

Modulprüfung